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ABSTRACT: We report spectroscopic measurements of the local electric field using vibrational Stark shifts of napthyl nitrile-
functionalized silicon under electrochemical working conditions. The CN bond is particularly sensitive to applied electric fields
and serves as a good probe for the local electric fields at the silicon−aqueous interface. Here, surface-enhanced Raman spectra
(SERS) are collected at a silicon surface using a water immersion lens as a function of the reference potential in a three-terminal
potentiostat. In deionized (DI) water and KCl solutions, the nitrile (i.e., CN) stretch downshifts by 4.7 and 8.6 cm−1, respectively,
under an applied potential of −1 V vs Ag/AgCl. Density functional theory (DFT) calculations of the napthyl nitrile complex carried
out under various electric fields establish the Stark tuning rate to be 0.5622 cm−1/(MV cm−1). Based on this relation, electric fields
of −8.4 and −15.2 MV/cm were obtained under negative applied potentials. These measurements report the electric field strength
within the double (i.e., Helmholtz) layer, which is responsible for pulling positively charged ions (e.g., H+) toward the surface in
reduction reaction processes.

■ INTRODUCTION
With the wide-scale adoption of silicon-based solar photo-
voltaics, it is important to develop scalable methods for solar
energy storage to provide solar-based energy during nights,
cloudy days, and winter months. Artificial photosynthesis is
one of the most effective methods to store the sun’s energy in
chemical bonds that can later be released without producing
harmful pollutants. While this general principle was demon-
strated almost 50 years ago by Fujishima and Honda,1,2 a
practical method enabling silicon to remain photochemically
stable was not demonstrated until 2011 with the discovery that
thin films of amorphous TiO2 deposited by atomic layer
deposition (ALD) can make silicon photochemically stable
without sacrificing photocatalytic performance.3 This approach
has since been applied to GaInP, GaAs, and InP, resulting in
world record efficiencies in solar-driven hydrogen evolu-
tion.4−12 While a majority of previous research in photo-
catalysis was based on metal oxide materials, which have low
carrier mobilities/lifetimes and large band gaps, the utilization

of high-quality optoelectronic materials has given way to more
precise control of the energy landscapes seen by electrons as
they pass through photocatalytic interfaces.13−16 Despite this,
little is known about the fundamental physics and chemistry
that takes place at the semiconductor−aqueous interface,
including electric fields and charge density, adsorption and
deposition of species, etc.
The large electrostatic fields at electrode and photoelectrode

surfaces (i.e., double layer, Helmholtz layer) play a significant
role in electrochemical reactions by pulling charged or
polarized reactants toward this interface.17 Therefore, these
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electrostatic fields strongly influence reaction mechanisms and
catalysis, which are closely related to the local field strength at
these interfaces. Previously, sum frequency generation (SFG)
spectroscopy explored the interfacial solvation effects of 4-
mercaptobenzonitrile (4-MBN) via the C−N frequency shift at
gold electrode surfaces.17,18 Lian’s group also used SFG probes
to probe electric fields at electrochemical interfaces.19 While
extremely surface-sensitive, SFG spectroscopy is a challenging
method, mainly due to the strong IR absorption in water
(electrolyte). This limits the optical path length to roughly 25-
μm-thick microfluidic channels or cells. Nonlinear optical
mixing of other components in the system gives rise to large
background signals, which obscure the small signals generated
by the surface layer of molecules.
Surface-enhanced Raman spectra (SERS)-based vibrational

Stark shifts represent an easier, more widely accessible way to
probe interfacial electric fields. Hildebrandt et al.20 and Harris
et al.21,22 reported SERS-based vibrational Stark shifts of
roughened metal electrodes. Shi et al. reported SERS-based
Stark shifts on Au nanoisland films deposited by electron-beam
evaporation, which are known to possess strong plasmon
resonances.23−27 In particular, the small gaps between the
islands in these films produce intense electric field “hot spots”,
which produce strong SERS enhancement. These previous
approaches on metal electrodes use surface-bound thiolated
molecules, such as 4-MBN, as a key component of this
spectroscopic approach. Electrochemical surface-enhanced
Raman spectroscopy (i.e., E-SERS) has also been used to
study chemical species adsorbed on metal electrode surfaces,
however, many of these studies report irreversible changes in
the spectra and results that have not been reproduced by other
groups.28−33 In these previous SERS-based Stark-shift studies,
only the electric fields at metal electrodes were studied.
In work presented here, we probe the Stark-shifted electric

fields at the surface of a silicon photoelectrode using napthyl
nitrile functionalization. This work leverages the vast body of
knowledge on silicon functionalization which spans a wide
range of applications from micro-electromechanical systems
(MEMS), microfluidics, biosensors, and other bioanalytical
applications, all with different interfacial characteristics.34−36

Previous in situ Raman-based Stark-shift measurements have
been carried on metal electrodes (i.e., Au37 and graphene38).
Here, we present a strategy for monitoring local electrostatic
fields at semiconductor/liquid interfaces using Stark shifts in
nitrile groups measured by SERS.

■ EXPERIMENTAL DETAILS
Figure 1 shows a schematic diagram of the experimental setup
and sample configuration. The procedure for synthesis and
surface immobilization of 2-cyano-3-[4-(dimethylamino)
naphthalen-1-yl] prop-2-enoic acid (1) was adapted from a
Knoevenagel condensation published previously,39 in which 4-
dimethlyamino-1-napthaldehyde (Aldrich, 97%; 1 equiv, 5
mmol, 0.996 g) and cyanoacetic acid (Aldrich, 99%; 1 equiv, 5
mmol, 0.423 g) were dissolved in a minimum amount of
ethanol (high-performance liquid chromatography (HPLC)
grade, Pharmoco) and added to a round bottom flask. Next,
piperidine (Aldrich, ReagentPlus; 0.12 mol %, 0.6 mmol, 51
mg) was added dropwise to the solution. The stirred solution
was heated to reflux overnight. Afterward, the ethanol was
removed under vacuum, and the remaining red solid was
washed with cold methanol (J.T. Baker, Reagent Grade; 0 °C)
and placed under vacuum for ∼3 h. After purification by

column chromatography using a silica stationary phase and
ethyl acetate (J.T. Baker, reagent grade) as an eluent, the
product (1) was bound to the silicon surface. To prepare the
silicon for functionalization, a p-type silicon wafer (100-
oriented, boron-doped, dopant concentration 1.0−1.5 × 1016

cm−3, from Topsil, Inc.) was sonicated for 10 min each in
acetone (electronic grade, J.T. Baker), isopropanol (Fischer),
and deionized water. The oxide-terminated silicon was then
etched in 2 M hydrofluoric acid (Sigma, 48% Reagent Grade,
diluted with deionized (DI) water) for 60s, and immediately
brought into an Ar glovebox (0.1 ppm O2, <0.5 ppm H2O). To
chlorinate the Si−H sites on the wafer, 10 mL of
chlorobenzene (Aldrich, HPLC grade, dried and distilled
over CaH2) solution saturated with phosphorus pentachloride
(Fluka, >98%) and 5−10 mg of a radical initiator (1,1′-
azobis(cyclohexanecarbonitrile), Aldrich, 98%) was prepared.
The wafer was soaked in the chlorination solution for 1 h at 90
°C in a sealed vial. After thoroughly rinsing the wafer with
chlorobenzene and toluene (J.T. Baker, reagent grade, distilled
over CaH2), the now chlorine (Cl)-terminated Si wafer was
allowed to react with a saturated solution of 2-cyano-3-[4-
(dimethylamino) naphthalen-1-yl] prop-2-enoic acid in dry
toluene at 100 °C overnight in a sealed vial. Afterward, the
wafer was rinsed thoroughly with dry toluene and sonicated
(10 min) in dry toluene without exposure to air.

Figure 1. (a) Schematic diagrams of the three-terminal photo-
electrochemical cell using a water immersion lens, (b) napthyl nitrile-
functionalized Si electrode, and (c) molecular structure of the grafted
silicon.
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Initially, after this functionalization procedure, we could not
obtain enough Raman signal from the napthyl nitrile-
functionalized Si to perform Stark-shift spectroscopy. To
increase the Raman signal, we deposited a 5 nm (nominal
thickness) Au film on the sample surface using electron-beam
evaporation. Five nanometers is not enough to form a
continuous film, which is known to be strongly plas-
monic.23,24,37,40 It is important to note that the napthyl nitrile
molecules are bound to the silicon and not the Au
nanoparticles. The structure of the sample is illustrated in
Figure 1b. Then, an Ohmic back contact of 200 nm aluminum
was deposited using e-beam deposition. A copper wire was
attached to the ohmic back contact, and the whole sample was
mounted on a glass slide and encapsulated in epoxy. This is
how we made our working electrode in a three-terminal
potentiostat setup.
In-situ Raman measurements of the plasmonic-enhanced,

napthyl nitrile-functionalized silicon surface were taken under
633 nm wavelength excitation using our Renishaw Raman
system, in pure DI water and 0.1 M potassium chloride
solution using a water immersion lens, as illustrated in Figure
1a. The lens was protected from the electrolyte solution by a
13-μm-thick Teflon sheet (American Durafilm, Inc.). The
electrochemical potentials were applied by our potentiostat
workstation (Gamry, Inc.) with respect to the reference
electrode. Silver/silver chloride (Ag/AgCl) reference electrode
and platinum wires were used as the reference and counter
electrodes, respectively. The exposed sample surface area was
about 1 cm2. We observed a weak Raman signal from the C
N nitrile stretch mode around 2125.0 cm−1 with a 120 s
integration time and 0.5 mW laser power. As such, the Au
nanoisland system presents a unique opportunity to study in-
situ SERS spectra at electrochemical interfaces. We tried to
apply electrochemical potentials within the range of −1 to 1 V
vs the Ag/AgCl reference electrode. However, we observed no
CN stretch Raman signal of this molecule under positive
potentials, which suggests that this molecularly functionalized
surface is only stable under reducing potentials but not
oxidative potentials. After we obtained the Raman spectra, we
fitted the peaks using a Lorentzian function and plotted the
Raman frequency of the CN stretch as a function of the
reference potential.

■ RESULTS AND DISCUSSION
Figure 2a shows the SERS-enhanced Raman spectra of the
napthyl nitrile-functionalized Si in DI water under various
applied potentials, as indicated in the legend. Here, we observe
a red shift in the vibrational frequency of the CN stretch of
the napthyl nitrile under negative applied potentials due to the
local electric fields produced at the silicon−aqueous interface.
Since the raw data is not clear enough, we also plot the
zoomed-in version of fitted spectra in the inset of Figure 2a.
The vibrational frequency of the CN stretch is known to be
particularly sensitive to applied electric fields. Figure 2b shows
the Raman shift of this vibrational mode plotted as a function
of reference potential. Here, we observe a 4.7 cm−1 red shift
over the applied voltage range, which is in the same order of
Stark shifts as observed in our previous work on metal
electrodes.17,18,37

Figure 3 shows the SERS-enhanced Raman spectra of the
napthyl nitrile-functionalized Si in 0.1 M KCl under various
applied potentials. Again, we observe a red shift in the
vibrational frequency of the CN stretch of the napthyl nitrile

under negative applied potentials due to the local electric fields
produced at the silicon−aqueous interface. Since the raw data
is not clear enough, we also plot the zoomed-in version of
fitted spectra in the inset of Figure 3a. Figure 3b shows the
Raman shift of this vibrational mode plotted as a function of
reference potential in both DI water and 0.1 M KCl. In KCl,
we observe an 8.6 cm−1 downshift over the applied voltage
range, which is somewhat larger than that observed in the DI
water due to the higher ionic strength of the KCl solution.17,18

To convert the experimentally observed Stark shift to the
electric field strength, the napthyl nitrile molecule, which
functionalizes Si is modeled. The oxygen atom, which is
bonded on Si is capped with a hydrogen atom in the
simulation. The carbon−carbon double bond, which connects
to the nitrile group is aligned in the direction where the electric
fields are applied. The factor used to convert the field strength
unit is 1 au = 5.14 × 109 V/cm.41 Full geometry optimization
and frequency calculations of the molecule were performed
under different electric fields. All calculations in this work were
performed using a local version of the Amsterdam density
functional (ADF) program package.42,43 The Becke−Perdew
(BP86) XC-potential44,45 and triple ζ-polarized (TZP) slater-
type basis set with large frozen cores from the ADF basis set
library were used. The vibrational frequencies and normal
modes were calculated within the harmonic approximation.
The vibrational frequencies of nitrile stretching are plotted
against the electric field strength in Figure 4. The slope of the
fitted line predicts a Stark tuning rate (STR) of 0.5622
(cm−1)/(MV cm−1).

Figure 2. (a) Waterfall plot of the raw Raman spectra of napthyl
nitrile-functionalized Si in DI water under various applied potentials
as indicated in the legend, the zoomed-in fitted peaks in the inset plot,
(b) Raman shift of the nitrile stretch plotted as a function of the
applied electrochemical potential.
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Based on this calculated Stark tuning rate, we converted the
Raman red shifts observed in DI water and a KCl solution to
the electric field, as plotted in Figure 5. Here, the observed
Stark shifts correspond to electric fields in excess of −10 MV/
cm. This negative field points down toward the silicon surface
and plays an important role in reduction processes, such as the
hydrogen evolution reaction (HER) by driving positively
charged ions (e.g., H+) to the surface, where they can undergo
charge transfer with the underlying substrate.

■ CONCLUSIONS
In conclusion, spectroscopic measurements of the electrostatic
field produced at the surface of an electrochemical semi-
conductor−electrolyte interface are reported using vibrational
Stark shifts of napthyl nitrile-functionalized silicon. The
vibrational frequency of the CN bond is sensitive to electric
fields and, therefore, provides a mechanism for monitoring the
electric fields that occur at the semiconductor−electrolyte
interface. In DI water and KCl solutions, the nitrile (i.e., C
N) stretch red shifts by 4.7 and 8.6 cm−1 at an applied
potential of −1 V vs Ag/AgCl. First principles calculations of
the napthyl nitrile complex are carried out as a function of the
electric field, yielding a Stark tuning rate (STR) of 0.5622
cm−1/(MV cm−1). This STR is used to convert the measured
Stark shifts to E-field, yielding maximum E-fields of −8.4 and
−15.2 MV/cm at −1 V vs Ag/AgCl. These electric fields are
responsible for driving positively charged ions and reactants to
the surface where they can undergo electron transfer from the
underling silicon in fulfillment of the reduction process.
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