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ABSTRACT: By discharging nanosecond high-voltage pulses in CO2-saturated
water, we observe CO2 reduction to higher-order hydrocarbons, including acetic
acid, formic acid, and oxalate. Here, the plasma emission spectra exhibit Swan
bands, which correspond to C2 species, indicating that in addition to reducing
CO2, C2-species are formed, which presents the possibility of converting a
notorious greenhouse gas into liquid (i.e., dense) hydrocarbon fuels. In order to
characterize various hydrocarbon products formed in this process, cryogenic
NMR spectroscopy and liquid ion chromatography are performed ex situ. Here,
we observe clear peaks corresponding to formic acid (CH2O2) and acetic acid
(CH3COOH). We have also observed the presence of formate (HCO2

−), acetate
(C2H3O2

−), and oxalate (C2O4
2−) using liquid ion chromatography. Plasma

emission spectroscopy exhibits spectral signatures associated with atomic
hydrogen and atomic oxygen due to the plasma discharge in water, which facilitate (and compete with) the CO2-to-
hydrocarbon conversion.

With increasing levels of greenhouse gases in our
atmosphere, CO2 reduction processes are of broad
interest because of their ability to mitigate global

warming. Many research groups (including our own) have
focused on electrochemical and photoelectrochemical CO2

reduction, involving various metal electrodes, molecule
catalysts, and plasmon-enhanced approaches.1−15 The reduc-
tion of CO2 with H2O to various hydrocarbons is a complex
reaction system requiring up to 8 electrons and many
intermediate species, some of which have extremely high
energy barriers. The mechanism for electrochemical CO2

reduction was first proposed by Bockris et al.16−18 The high
overpotential required for this reaction was attributed to the
formation of the (CO2)

− intermediate, CO2 + e− → (CO2)
−,

which is the rate-limiting step of CO2 reduction. The highly
energetic species provided by the plasma (i.e., nonequilibrium
approach) provide a strategy for overcoming the reaction
barrier associated with the (CO2)

− reaction intermediate.
Dielectric barrier discharge has been reported for conversion of
carbon dioxide to syngas and hydrocarbons at atmosphere
pressure with or without catalyst.19−21 Heijkers et al.,
Masaharu et al., and Mitsingas et al. reported the decom-
position of CO2 by microwave plasma in carrier gases of N2,
Ar, or He.22−24 Pulsed plasmas have also been used to drive
gas-phase CO2 reduction reactions and subsequent conversion
to hydrocarbon fuels (syngas).25−28

While there have been many papers reporting CO2
reduction to higher-order hydrocarbons in the gas
phase,29−35 to our knowledge few have shown CO2 reduction
in carbonated water by plasma discharge. Rumbach et al.
showed that CO2 can be reduced in an aqueous medium using
a plasma-based electrode to produce oxalate and formate.36 In
their work, the plasma discharge was generated in the gas
phase (above liquid) and highly energetic electrons were
injected into the solution, thus producing solvated electrons.
Generating a plasma discharge in aqueous solutions requires
voltages significantly higher than that in the gas phase because
of the relatively high dielectric strength of the aqueous
medium. Common approaches to lowering the discharge
threshold include using a needle electrode, a gas diffuser, or
pressurization to create bubbles, enabling the discharge to be
initiated within a small bubble on the electrode surface and
then propagate into the aqueous phase.37−45

In the work presented here, we demonstrate CO2 reduction
to higher-order hydrocarbons by discharging a nanosecond
pulsed plasma in carbonated (i.e., CO2-satuarated) aqueous
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solution. Here, the carbonated water gives rise to small bubbles
which lower the voltage needed to generate the plasma and
also provides a relatively high concentration of CO2 in the
aqueous solution.
In the work presented here, the transient pulsed plasma is

produced on a glass slide-based reactor with a high-voltage
pulse generator (Model 30X, Transient Plasma Systems, Inc.),
which produces pulses with peak voltages up to 30 kV, pulse
rise times of 5−10 ns, and repetition rates up to 2 kHz. A
typical waveform is shown in Figure 1b. Figure S1 in the

Supporting Information shows a plot of our waveform
characteristics over several cycles, in which the short
nanosecond pulses are repeated at a rate of 1 kHz, giving
rise to a duty cycle of approximately 1:105. The in situ plasma
emission spectra are taken with an inVia Raman micro-
spectrometer (Renishaw, Inc.). The cryogenic NMR spectros-
copy and liquid ion chromatography (Dionex, ICS-2000) are
performed ex situ before and after 30 min plasma discharges in
10 mL of carbonated solution. The Dionex Ion Chromatog-
raphy System (ICS-2000, Thermo Fisher Scientific, Sunnyvale,
CA) is equipped with a refrigerated autosampler and has a
detection limit of 0.1 mg/L for the tested compounds.
Figure 1a shows a schematic diagram of our experimental

setup for observing plasma emission spectroscopy. Here, two
copper tape electrodes, separated by a 5 mm gap, are attached
to the bottom side of a 1 mm-thick glass slide, and immersed
in the carbonated water electrolyte, while the top surface of the
glass slide remains in air. This geometry enables plasma
emission spectra to be taken efficiently using a glass-corrected
objective lens.Figure 2 shows several photographs of the
plasma discharge using copper tape electrodes deposited on a
glass slide in DI water (deionized water) and CO2-satuarated
DI water at 13 kV (Figure 2a) and 28 kV (Figure 2b). In DI
water, 28 kV pulses are needed in order to generate a plasma,
which is much higher than the voltages required to create a
plasma in the gas phase (∼5 kV)46,47 because of the relatively
high dielectric strength of the aqueous medium, which has a
breakdown field 5−6 times higher than that of air. The copper
electrodes are patterned with sharp tips to provide additional
field enhancement to help initiate the plasma. In carbonated
water, we can achieve plasma discharge at 13 kV because of the
presence of bubbles. The aqueous solution can potentially
provide a higher density of reactants than gas-phase reactions.
In our measurement, the carbonated water was produced at
room temperature (25 °C) using a SodaStream water-
carbonator, which is capable of carbonating the water at
approximately 20 PSI, from which we estimate the initial
amount of CO2 in solution to be around 2 g/L.48 Carbon
dioxide dissolves in water at 0.2−1.0% concentration (1.45−
3.0 g/L), which creates carbonic acid (H2CO3).

49−52 However,

Figure 1. (a) Schematic diagram of the experimental setup used to
take in situ plasma emission spectra. (b) Typical output
characteristics of nanosecond high-voltage pulse generator.

Figure 2. Plasma emission generated with copper tape electrodes in deionized (DI) water and carbonated water at (a) 13 kV and (b) 28 kV.
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the plasma discharge is likely initiated within bubbles of
gaseous CO2, because it is easier to achieve a plasma discharge
in gas than in liquid. That is, the reported dielectric strength of
air is 22× less than that of water. We believe that it is these
CO2-rich pockets that enable C2 formation, in the gas-phase
plasma, liquid phase, or some interaction between the gas and
liquid phases.24,53−57

Figure 3 shows plasma emission spectra of our transient
pulsed plasma obtained in a CO2-saturated aqueous environ-

ment taken with a high numerical aperture objective lens, as
illustrated in Figure 1a. Here, we observe several sets of Swan
bands, which correspond to C2 (diatomic carbon) species.58,59

For example, C2(1,0), C2(0,0), and C2(0,1) correspond to
different vibrational and rotational states of this diatomic
species. This indicates that, in addition to reducing CO2 (i.e., a

high barrier reaction), C2-species are formed, which may
subsequently convert to acetate (C2H3O2

−) and oxalate
(C2O4

2−), as detected by liquid ion chromatography (see
Figure 4). While copper is a well-known CO2 electro-

catalyst,1,6,60−63 we have conducted additional experiments
with aluminum electrodes instead of copper. Here, we found
comparable C2 species as plotted in the spectra shown in
Figure S2. Therefore, we do not believe that the copper
electrodes themselves are catalytically activating the CO2
independent of the plasma.
From a pulsed discharge in water, we also observe features in

the emission spectra associated with the H and O radicals,
which correspond to highly chemically reactive species.64−68

One of the main challenges in producing hydrocarbons using a
plasma is that the atomic oxygen rapidly drives the back
reaction of carbon to CO and CO2. Panels b and c of Figure 3
show the plasma emission spectra corresponding to atomic
oxygen and hydrogen. Here, both the H and O radicals are
more easily generated in carbonated water than in DI water
because of the presence of bubbles which assist in the plasma
discharge process, thereby generating a higher-density plasma
under the same voltage conditions. As mentioned above, the
formation of CO2 bubbles gives rise to a lower threshold for
plasma discharge than in DI water. This finding is consistent
with previous papers on plasma discharge in water, most of
which provide some strategy for creating bubbles and thus
lowering the plasma discharge threshold.37−45 Dobrynin and
co-workers investigated the initiation stage of nanosecond

Figure 3. Plasma emission spectra of (a) C2 species, (b) atomic O,
and (c) H radicals observed in DI water and carbonated water with
15 kV pulses at the repetition rate of 400 Hz.

Figure 4. Cryogenic 1H NMR spectra taken before and after 30
min plasma discharge in CO2-saturated water of (a) formic acid
and (b) acetic acid.
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breakdown in liquid, which revealed the appearance of
discontinuities in the liquid (cavitation) under the influence
of electrostriction forces.69 It is possible that this cavitation
effect is more pronounced in the carbonated water electrolyte;
however, these experiments could not be performed with our
existing experimental setup.
In order to quantify the hydrocarbons produced by the

plasma discharge in carbonated water, we performed cryogenic
NMR spectroscopy of various products in water (i.e.,
hydrocarbons) and liquid ion chromatography ex situ. Figure
4 shows cryogenic NMR spectra taken before and after plasma
discharge in CO2-saturated water. Here, we observe clear peaks
corresponding to formic acid and acetic acid, which
corresponds to a C2-hydrocarbon species. We have also
observed the presence of oxalates (i.e., C2O4

2−) using liquid
ion chromatography, as shown in Figure S4, which also
correspond to C2 species.
One possible reaction pathway takes place via hot electrons

generated in the bubbles, which are subsequently injected into
the aqueous solution forming solvated electrons, which have an
extremely high reduction potential.70,71 This reaction can
potentially follow the pathway CO2 + e− → CO2

− and then
CO2

− + CO2
− → (CO2

−)2 for oxalate and CO2
− + H+ + e− →

HCOO− for formate.36,72−75 Mota-Lima reported a theoretical
overview of plasma/liquid interface as a platform for highly
efficient CO2 electroreduction to oxalate, in which the carboxyl
radical anion (CO2

−(aq)) plays an important role.75 Here, the
one-electron reduction to CO2

− represents a high-barrier
intermediate that is enabled by the high-energy electrons in the
plasma and subsequent generation of solvated electrons.36 This
is essentially homogeneous chemistry in the aqueous phase
driven by solvated electrons, which have an extremely low (i.e.,
strongly) reducing potential (−2.87 V vs SHE or only 1.41 eV
below vacuum). These solvated electrons, while difficult to
form, have been used to drive difficult reactions such as
ammonia formation, which transforms N2 and water to NH3

without a catalyst surface, as well as CO2 reduction to
CO.70,71,76,77

While it is possible that CO2 reduction is induced by the
formation of solvated electrons reported previously by
Rumbach et al.,36,71 the lifetime and penetration depth of
these solvated electrons are quite small. It is, therefore, more
likely that the reaction occurs in the gas phase (i.e., in the
bubbles),25−28 where the CO2 in the liquid phase continuously
supplements the gas phase to ensure the continued progress of
the reaction. The gas-phase reaction (in the bubble) can
involve only CO2, H radicals, O radicals, and H2O. We have
detected H2 and CO by GC measurements (see Figure S3),
which could serve as possible reaction intermediates. In this
case, this process involves mixed phases: liquid, gas, and
plasma. However, further studies would be needed in order to
establish the precise proportion of these reactions that occur in
the liquid and gas phases.
The production of acetic acid is especially interesting, as it

has not been observed before and likely has a more complex
reaction pathway than either formate or oxalate. While a
detailed pathway for this reaction is not currently understood,
two possible reaction pathways for acetic acid include the
following:

(1) Via formate

HCOO 5H 4e CH OH H O

HCOO CH OH H CH COOH H O

(2HCOO 6H 4e CH COOH H O)

3 2

3 3 2

3 2

+ + → +

+ + → +

+ + → +

− + −

− +

− + −

(2) Via oxalate

C O 8H 6e CH COOH 2H O2 4 3 22 + + → ++ −
−

Another possible mechanism was reported by Genovese et al.
for C−C bond formation in the electrocatalytic reduction of
CO2 to acetic acid via the reaction of CO2

− with surface
adsorbed −CH3 species.

78

In this work, the formic acid and acetic acid yields are
estimated to be 2.2 × 10−3 and 4.4 × 10−4 mol/L, respectively,
based on cryogenic 1H NMR spectroscopy with respect to a
known amount of methanol (CH3OH). The voltage and
current waveforms (vs time) are plotted in Figure S6, which
indicate an energy per pulse of 18.6 mJ. While the plasma
density depends on many factors, including electrode geometry
and dielectric medium, we estimate the efficiency of formic
acid and acetic acid production to be 1.6 × 10−9 moles and 3.3
× 10−10 moles per Joule of energy based on the energy per
pulse multiplied by the pulse repetition rate. While previous
work on plasma-based CO2 conversion carried out in the gas is
typically reported in % CO2 conversion efficiencies (e.g., 5−
35% energy efficiencies31,79 or 10% faradaic efficiency36), no
values in mol/Joule have been put forth for plasma discharge in
an aqueous electrolyte. Assuming the formic acid and acetic
acid production proceed in the gas phase, on the basis of the
reaction enthalpy of the overall reactions CO2 + H2O →
HCOOH + 1/2 O2 (ΔH = 243 kJ/mol) and 2CO2 + 2H2O→
CH3COOH + 2O2 (ΔH = 875 kJ/mol), we can estimate their
energy efficiency to be around 1 × 10−7 mol/J for formic acid
and 1 × 10−8 mol/J for acetic acid, which is 2 orders of
magnitude larger than our results.
It should be noted that our current approach is far from

optimized, and we believe several orders of magnitude
improvement can be achieved by improving the electrode
geometry, introducing catalytically active surfaces, and
controlling the local electrode environment/potential. While
discharging a plasma in water is particularly difficult, this
provides a unique environment in which the ion concen-
trations can be varied by 14 orders of magnitude (e.g., pH 0−
14) (unlike gas-phase reactions), ultimately enabling us to
better control reaction rates and selectivity. Upon introducing
a catalytically active surface (e.g., NiO), this CO2 reduction
reaction can be driven more efficiently.34,35 It is interesting to
note that the C2 swan bands presented in Figure S2 are roughly
a factor or 2 less intense than those obtained with Cu, plotted
in Figure 3a. However, because of the inherent fluctuations in
this water-based discharge, it is very hard to compare
intensities. Lastly, by implementing electrode geometries that
provide electric field enhancement, significant improvements
in the overall efficiency can be achieved. For example, the
active area over which the plasma is discharged in this work is
limited to several square micrometers. Using a transmission
line geometry, much larger areas of approximately square
millimeters can be achieved.80−83 Further approaches to
improving efficiency include employing an active means of
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separating the products from the reactants (e.g., azeotropic
distillation), which enable the accumulation of a significant
amount of product while minimizing destructive back
reactions.
We have demonstrated CO2 reduction to C1 and C2

hydrocarbons by discharging nanosecond high-voltage pulses
in carbonated (i.e., CO2-saturated) water. After discharging
plasma, we observe the formation of acetic acid, formic acid,
and oxalate through the complex interaction between liquid,
gas, and plasma phases. Swan bands are exhibited in the plasma
emission spectra, confirming the formation of C2 (diatomic
carbon radical) species. A substantially lower threshold voltage
is needed to generate a plasma in carbonated water than in DI
water because of bubbles formed on the electrode surface.
Cryogenic NMR spectroscopy reveals clear peaks correspond-
ing to formic acid (CH2O2) and acetic acid (CH3COOH), and
liquid ion chromatography shows the presence of oxalates (i.e.,
C2O4

2−) after discharging plasma in carbonated water.
Electrodes mounted on a glass slide form a submerged planar
surface discharge that enables plasma emission spectra to be
obtained in situ, which show spectral signatures of atomic
hydrogen and atomic oxygen, representing intermediate
species that facilitate (and compete with) the conversion of
CO2 to hydrocarbons.
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